MUSA: a parameter free algorithm for the identification of biologically significant motifs
نویسندگان
چکیده
MOTIVATION The ability to identify complex motifs, i.e. non-contiguous nucleotide sequences, is a key feature of modern motif finders. Addressing this problem is extremely important, not only because these motifs can accurately model biological phenomena but because its extraction is highly dependent upon the appropriate selection of numerous search parameters. Currently available combinatorial algorithms have proved to be highly efficient in exhaustively enumerating motifs (including complex motifs), which fulfill certain extraction criteria. However, one major problem with these methods is the large number of parameters that need to be specified. RESULTS We propose a new algorithm, MUSA (Motif finding using an UnSupervised Approach), that can be used either to autonomously find over-represented complex motifs or to estimate search parameters for modern motif finders. This method relies on a biclustering algorithm that operates on a matrix of co-occurrences of small motifs. The performance of this method is independent of the composite structure of the motifs being sought, making few assumptions about their characteristics. The MUSA algorithm was applied to two datasets involving the bacterium Pseudomonas putida KT2440. The first one was composed of 70 sigma(54)-dependent promoter sequences and the second dataset included 54 promoter sequences of up-regulated genes in response to phenol, as suggested by quantitative proteomics. The results obtained indicate that this approach is very effective at identifying complex motifs of biological significance. AVAILABILITY The MUSA algorithm is available upon request from the authors, and will be made available via a Web based interface.
منابع مشابه
Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملFree Vibrations of Three-Parameter Functionally Graded Plates Resting on Pasternak Foundations
In this research work, first, based on the three-dimensional elasticity theory and by means of the Generalized Differential Quadrature Method (GDQM), free vibration characteristics of functionally graded (FG) rectangular plates resting on Pasternak foundation are focused. The two-constituent functionally graded plate consists of ceramic and metal grading through the thickness. A three-parameter...
متن کاملDetermining optimal value of the shape parameter $c$ in RBF for unequal distances topographical points by Cross-Validation algorithm
Several radial basis function based methods contain a free shape parameter which has a crucial role in the accuracy of the methods. Performance evaluation of this parameter in different functions with various data has always been a topic of study. In the present paper, we consider studying the methods which determine an optimal value for the shape parameter in interpolations of radial basis ...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملParticle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 24 شماره
صفحات -
تاریخ انتشار 2006